Digital Stopwatch Circuit
Digital Dice Circuit
A2 to 4 Line Single Bit Decoder
Direction Finder Electronic Circuits
Digital Ping Pong Circuit
References:
http://www.google.com.ph/imgres?imgurl=http%3A%2F%2Fwww.circuitstoday.com%2Fwp-content%2Fuploads%2F2008%2F02%2Fstopwatch1.JPG&imgrefurl=http%3A%2F%2Fwww.circuitstoday.com%2Fcategory%2Fclockingtimecircuits&h=661&w=1300&tbnid=S8tSFw0vDFcZpM%3A&zoom=1&docid=AqxZef_cfTjYMM&ei=owoRVLiBForU8gXnooH4Dw&tbm=isch&ved=0CC4QMygAMAA&iact=rc&uact=3&dur=1286&page=1&start=0&ndsp=9
http://www.google.com.ph/imgres?imgurl=http%3A%2F%2Fwww.circuitstoday.com%2Fwp-content%2Fuploads%2F2009%2F06%2Fdigital-dice-circuit.jpg&imgrefurl=http%3A%2F%2Fwww.circuitstoday.com%2Fdigital-dice-circuit&h=583&w=605&tbnid=cdwGSLmc1AwbBM%3A&zoom=1&docid=56-xxYyLaeCyAM&ei=owoRVLiBForU8gXnooH4Dw&tbm=isch&ved=0CC8QMygBMAE&iact=rc&uact=3&dur=673&page=1&start=0&ndsp=9
http://www.google.com.ph/imgres?imgurl=http%3A%2F%2Fwww.ktclear.in%2Fuploads%2F25(1)Digital%252520Circuit%252520Technologies%252520and%252520Sequential%252520Circuits&imgrefurl=http%3A%2F%2Fwww.ktclear.in%2Fmockanswer%3Fmock_question%3DWhat%2520are%2520decoders%3F%25A0&h=735&w=1531&tbnid=vPAQ0XOLmNNGeM%3A&zoom=1&docid=ecc7DZ2fEPrOrM&ei=owoRVLiBForU8gXnooH4Dw&tbm=isch&ved=0CDIQMygEMAQ&iact=rc&uact=3&dur=673&page=1&start=0&ndsp=9
http://www.google.com.ph/imgres?imgurl=http%3A%2F%2Fwww.geocities.co.jp%2FTechnopolis-Mars%2F3335%2FProjects%2Fcompass%2Fcompass.gif&imgrefurl=http%3A%2F%2Fwww.discovercircuits.com%2FD%2Fdirection.htm&h=750&w=1000&tbnid=z3rB3aalebzQvM%3A&zoom=1&docid=md4vGHxdq2Jg-M&ei=owoRVLiBForU8gXnooH4Dw&tbm=isch&ved=0CDUQMygHMAc&iact=rc&uact=3&dur=514&page=1&start=0&ndsp=9
http://www.next.gr/uploads/303-341acaa462.gif
Wednesday, September 10, 2014
Tuesday, September 9, 2014
Astable Multivibrators
Astable
Multivibrators
-have
no stable state.
-these
circuits are more commonly known as oscillators.
A typical astable multivibrator or
oscillator may be formed using CMOS gates.
The 555 Timer
-is
an integrated circuit (chip) used in a variety of timer,
pulse generation, and oscillator applications.
Pin Names
Astable Operation
Charge period t1 = 0.693(R1+R2) C
Discharge
period t2 = 0.693(R2) C
Total
period T = t1+t2 = 0.693(R1+R2) C
The operating frequency of the generated square wave is equal to 1/T or in simplified form,
f = 1.44
(R1 + 2R2)C
The duty cycle is a factor of the resistors,
D = R2
R1 + 2R2
Reference:
Benjo Tirol. Fundamentals of Digital Electronics. Electronics Hobbyists Publishing House.
https://www.google.com.ph/searchq=astable+output&biw=1366&bih=677&source=lnms&tbm=isch&sa=X&ei=BKcPVIyrIdagugS9oDIDA&sqi=2&ved=0CAYQ_AUoAQ#facrc=_&imgdii=_&imgrc=Xcfz1bfXsmOqpM%253A%3BJk1HC25GWAlWCM%3Bhttp%253A%252F%252Fwww.electronicstutorials.ws%252Fsequential%252Fseq11.gif%3Bhttp%253A%252F%252Fwww.electronics-tutorials.ws%252Fsequential%252Fseq_3.html%3B392%3B169
https://www.google.com.ph/searchq=astable+output&biw=1366&bih=677&source=lnms&tbm=isch&sa=X&ei=BKcPVIyrIdagugS9oDIDA&sqi=2&ved=0CAYQ_AUoAQ#tbm=isch&q=cmos+gate+of+astable&facrc=_&imgdii=_&imgrc=FGIPeRTnnU2TsM%253A%3Bl0u09NI7ybo5PM%3Bhttps%253A%252F%252Fwww.calvin.edu%252F~pribeiro%252Fcourses%252Fengr332%252FHandouts%252FChap13_files%252Fslide0022_image066.jpg%3Bhttps%253A%252F%252Fwww.calvin.edu%252F~pribeiro%252Fcourses%252Fengr332%252FHandouts%252FChap13_files%252Fslide0022.htm%3B258%3B104
https://www.google.com.ph/searchq=astable+output&biw=1366&bih=677&source=lnms&tbm=isch&sa=X&ei=BKcPVIyrIdagugS9oDIDA&sqi=2&ved=0CAYQ_AUoAQ#tbm=isch&q=555+timer+png&facrc=_&imgdii=_&imgrc=yqTm6CtckSCXMM%253A%3B7ugZdBO-hB5hPM%3Bhttp%253A%252F%252Fupload.wikimedia.org%252Fwikipedia%252Fcommons%252Fthumb%252Fc%252Fc7%252F555_Pinout.svg%252F500px-555_Pinout.svg.png%3Bhttp%253A%252F%252Fwww.newprojectwala.com%252F2013%252F02%252F555-timer-ic.html%3B500%3B330
https://www.google.com.ph/searchq=astable+output&biw=1366&bih=677&source=lnms&tbm=isch&sa=X&ei=BKcPVIyrIdagugS9oDIDA&sqi=2&ved=0CAYQ_AUoAQ#tbm=isch&q=astable+multivibrator&facrc=_&imgdii=_&imgrc=RBgNuB69QvoU5M%253A%3Bk__NDhDuWBcXCM%3Bhttp%253A%252F%252Fwww.yashplus.com%252Fwpcontent%252Fuploads%252F2014%252F01%252Fimage4.png%3Bhttp%253A%252F%252Fwww.yashplus.com%252F2014%252F01%252Fic-555-as-astable-multivibrator%252F%3B761%3B298
Monday, September 8, 2014
Basic Logic Gates
Logic
gates are the basic building blocks in digital electronics. They are
intended to implement different logic functions such as the NOT, OR,
NOR, AND, NAND, XOR and ENOR or XNOR.
There
are many ways of describing the function of logic gates and other
logic devices. The two most common are through truth tables and
timing diagrams. A truth table is a tabulated list of all possible
input and output combinations of a logic device. The timing diagram
is similar to the truth table in that it shows the outputs for the
different possible inputs. The inputs and outputs are vertically
aligned and the horizontal spacing denotes changes with respect to
time in periods or cycles.
Inverter/ NOT Gate
Inverter/ NOT Gate
-is one of the most popular logic gates in terms of use. It has one input and one output.
x | z |
0 | 1 |
1 | 0 |
OR
Gate
-provides
a high or “1” output when at least one of its inputs is “1”.
The output is low or “0” when all its inputs are “0”.
x1 | x0 | z |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
NOR
Gate
-is
formed by an OR gate followed by an inverter.
x1 | x0 | z |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
AND Gate
-is another basic logic gate whose output is a high logic output only when all inputs are high.
x1 | x0 | z |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
NAND Gate
-produces a low logic output only when all its inputs are high.
x1 | x0 | z |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
XOR Gate
-is an "exclusive" gate that produces a high logic output only when one but not all inputs is high.
x1 | x0 | z |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Exclusive NOR Gate
-is the complement of the exclusive OR gate. It produces a low logic output only when one but not all its inputs is high.
x1 | x0 | z |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
References:
Benjo Tirol. Fundamentals of Digital Electronics. Electronics Hobbyists Publishing House.
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Comb/gates.html
Subscribe to:
Posts (Atom)